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We studied the transient dynamics of synchronized coupled neuronal bursters subjected to repeatedly applied
stimuli, using a hybrid neuroelectronic system of paddlefish electroreceptors. We show experimentally that the
system characteristically undergoes poststimulus transients, in which the relative phases of the oscillators may
be grouped in several clusters, traversing alternate phase trajectories. These signature transient dynamics can
be detected and characterized quantitatively using specific statistical measures based on a stochastic approach

to transient oscillator responses.
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I. INTRODUCTION

Synchronization is a fundamental phenomenon of rhythm
adjustment in systems of coupled nonlinear self-sustained
oscillators (for a recent review, see [1,2]). The majority of
studies on synchronization have addressed steady states.
However, in many applications, including in neuroscience
and medicine, the impact of external time-localized perturba-
tions on synchronized oscillators are of primary interest. For
example, transient synchronization of neurons is believed to
play a crucial role in the processing of sensory information
[3-5], and transient synchronization has recently been sug-
gested as a collective mechanism of spatiotemporal integra-
tion in the central nervous system [6]. Transient time-
localized brain responses evoked by sensory stimuli play a
key role in the study of information processing in the brain.
For example, in Ref. [7] the effect of phase precession of
oscillations in the hippocampus was assessed by means of an
analysis of the transient synchronization in response to brief
stimuli. Transient synchronization in the auditory cortex was
recently studied in Ref. [8]. The role of ongoing brain
rhythms, especially of a phase reset of neuronal rhythms, in
the generation of sensor-evoked brain responses, is still a
matter of debate [9].

*Current address: Department of Biological Sciences, Ohio Uni-
versity, Athens, OH 45701, USA

Current address: Department of Anatomy and Neurobiology,
Washington University School of Medicine, 660 Euclid Avenue, St.
Louis MI 63121, USA.

“Author to whom correspondence should be addressed.

1539-3755/2007/76(2)/021908(10)

021908-1

PACS number(s): 87.19.La, 05.45.Xt, 05.40.Ca, 87.17.Nn

On the other hand, human neurological disorders such as
essential tremor and tremor caused by Parkinson disease or
multiple sclerosis appear to be caused by abnormal synchro-
nization of the activity of neuronal populations, departing
from the incoherent firing of these neurons under normal
conditions [10,11]. Recent studies have shown that this ab-
normal synchronization is transient, or nonstationary [12]. To
improve the empirically derived deep brain stimulation [13],
several stimulation procedures were proposed to destroy un-
wanted synchronization by utilizing either localized pulse
stimulation [14,15] or delayed feedback [16,17] (for a recent
review, see [18]). Thus, transient synchronization and desyn-
chronization is an important issue in the design of new
stimulation procedures.

The dynamics of stimulus-locked transient processes in
coupled oscillators was recently studied using numerical
models of phase oscillators with instantaneous [19-21] or
delayed coupling [22] in the presence of noise. An important
prediction from the simulations was that phase resetting
stimuli delivered to two oscillators at appropriately chosen
times may cause the oscillators’ ensemble of transient re-
sponses to split into different groups [19]. That is, a per-
turbed system of coupled oscillators may follow two or more
different transient paths as it returns to its original state of
synchronization. This response clustering occurs if the coor-
dinated phase resetting stimuli shift the system of coupled
oscillators to a particular volume of the phase space from
where—after stimulus offset—the trajectories relax toward
the stable synchronized state via two different paths [19,22].
In the case of instantaneous coupling (i.e., coupling without
delay), the two oscillators have to be reset close to an un-
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stable fixed point of their relative phase [19]. These predic-
tions require validation in a well-defined experimental sys-
tem of coupled oscillators. For instance, analyses of phase
models are restricted to the cases of weak coupling and small
perturbations [23]. In fact, it is by no means self-evident that
the phase reduction approach is also valid in the case of
strong shocklike pulses and subsequent transient oscillator
responses [24].

We have developed a well-defined experimental system
that utilizes pairs of electroreceptors of paddlefish, which are
externally supplied with feedback, and/or coupled, using
electronic circuits and real-time computation, to set up syn-
chronized periodic bursting firing patterns of the two elec-
troreceptors’ output neurons (afferents, sending action poten-
tials to the brain). Periodic bursting is a widespread type of
neuronal activity [25], both normally as well as in disorders
such as Parkinson disease [26]. Based on the dynamic clamp
approach hybrid neuroelectronic systems [27] were used to
study steady-state synchronization of electrically coupled in
vitro neurons [28,29] and phase resetting curves of single
neurons [24]. In this paper, we used small networks of
coupled electroreceptors to experimentally study the tran-
sient desynchronization and resynchronization dynamics of
coupled bursting neurons in an in vivo preparation. We
present experimental evidence of clustering of transient
phase responses in a neural system, confirming predictions
from simulations. Also, we demonstrate explicitly the neces-
sity of using specific indices to quantify transient phase re-
setting data, compared to traditional types of data analysis
used widely in neuroscience. The structure of the paper is as
follows. In Sec. II, we review stimulus-locked transient dy-
namics of coupled self-sustained oscillators and introduce
measures of transient synchronization. Section III describes
paddlefish electroreceptors and experimental methods. Ex-
perimental results are described in Sec. IV, followed by con-
clusions in Sec. V.

II. STIMULUS-LOCKED TRANSIENT DYNAMICS OF
COUPLED PHASE OSCILLATORS AND STOCHASTIC
PHASE RESETTING ANALYSIS

A. Model for coupled phase oscillators

Let us consider two coupled noisy phase oscillators with
natural frequencies w;,. We assume that the dynamics of
oscillators are captured by their instantaneous phases ¢, »(¢),
given by [19]

. K
di= o= sin(de= ) + st b + 2D, (1)

where k,j=1,2; j# k. Natural frequencies of oscillators are
w;,=w=xA/2, where A is the detuning. In Eq. (1), the pa-
rameter K is the coupling strength, and &(¢) are zero-mean
Gaussian white noise sources with intensities D. The effect
of stimuli on oscillators is assumed to be phase dependent
[30], and thus modeled by time and phase dependent func-
tions s,(¢, dp) =X, (r)cos(¢y), where X, (7) is a pulse X,(1)=1,,
which is on at time 7, and X;(r)=0 when the stimulus is off at
time 7 [19].
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In the absence of stimuli, /=0, the dynamics of the phase
difference (1) = ¢,(r)— ¢,(¢) is governed by Adler’s equation

[31]

y=A—-Ksin y+ 5(t), (2)

7(t) is Gaussian white noise. In the absence of noise
(7=0), synchronization occurs when K>A, when Eq. (2)
possesses stable and unstable equilibria. Stable equilibrium
corresponds to oscillators’ phase locking. In the presence of
noise, the dynamics of the phase difference can be repre-
sented as a motion of a Brownian particle with coordinate ¢
in a tilted periodic potential U())=—A¢—K cos i [32]. In
the case of weak noise, the phase difference trembles within
the potential wells and rarely slips from one potential well to
another. The detuning A determines the tilt of the potential.
In the case A=0 (identical oscillators), the potential U(¢) is
not tilted and the phase difference slips to the right or to the
left from a potential well with equal probabilities. Inhomo-
geneity of oscillators breaks this symmetry, resulting in a
preferred direction of the phase slippage.

B. Stochastic phase resetting analysis

We now consider rectangular stimuli administered to both
oscillators, repeatedly at random times ¢, n=1,...,N, where
N is the number of stimuli administered. The magnitude of
pulses is assumed to be significantly larger than the coupling
strength K, such that they rapidly reset the oscillators’
phases. To extract transient phase responses that are stereo-
typed and tightly time locked to the stimuli, we perform a
cross-trial analysis [19-21]. For this, a time window of width
w centered at 7, is attached to every stimulus pulse. An en-
semble of oscillators responses is then created by aligning
stimulus windows. In each trial window, the stimulus onset is
at t=0 and t€[t,-w/2, t,+w/2]. The width of the trial
window is assumed to be large compared to both the stimu-
lation duration and transients in oscillators. Equivalently, we
can consider an ensemble of N pairs of coupled oscillators
subjected to a common stimulus delivered at time 7=0. Note
that there are two sources of randomness in the system. Al-
though the pairs of oscillators are identical, they start with
random initial conditions at fy=—w/2 and are subjected to
noise sources, which are statistically independent in each os-
cillator.

Transient statistical properties of the ensemble of re-
sponses can be derived from the time-dependent cross-trial
probability distributions of the oscillators’ phase difference
p(t,4), and of the oscillators” phases P;(,¢,) relative to
stimuli [19-21]. Valuable information on the extent of stimu-
lus locking can be extracted using absolute values of time-
dependent Fourier coefficients of these distributions [19],

7\;]})0) — |<exp[iv¢j(t)]>

. o(t)=[explig(n)])

)

where v is the harmonic number, and brackets (...) denote
averaging over multiple stimulus trials, here and in the fol-
lowing. One such Fourier coefficient is the resetting index
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pi(0)=\"(0), (4)

which measures whether the phase ¢; of the jth oscillator is
tightly time locked at time ¢ relative to stimulus onset, across
trials. p;()=1 signifies a perfect reset of the phase of the jth
oscillator at time ¢, such that all stimulus trials lead to exactly
the same value of the oscillator’s phase. p;(r)=0 indicates the
absence of resetting. A situation where the phase distribution
of the jth oscillator has two antiphase peaks reflects a clus-
tering of the oscillator’s responses across trials, which can be
quantified by the clustering index [20],

a,(0) =\ () - \"(0). )

This assumes the value a;(t)=1 if the phase distribution at
time ¢ across trials has two Dirac-type symmetric antiphase
peaks, corresponding to two clusters of antiphase phase re-
sponses of equal size.

The index o(f) quantifies the degree of stimulus-locked
synchronization between different oscillators, which can
range from O to 1. Perfect synchronization corresponds to
o=1 and means that in all trials we observe the same phase
difference at time ¢ relative to stimulus onset, irrespective of
the actual value of the phase difference. The absence of syn-
chronization, 0=0, means that across trials there is no pre-
ferred value of the phase difference at time ¢ relative to
stimulus onset.

C. Transient dynamics

As a demonstration of the application of stochastic phase
resetting analysis, we consider the transient dynamics of two
coupled phase oscillators initially synchronized in antiphase.
Figure 1 shows the dynamics of an ensemble of 200 transient
responses. At a given moment of time, the state of the re-
sponse ensemble can be displayed as a collection of points
on the reference circle [Fig. 1(a)], where the position of a
point refers to the phase of a trial at time ¢. Such a collection
of points represents the cross-trial distribution of the phase of
an oscillator.

Before stimulation, t<0, the oscillators are synchronized
in antiphase. Due to the random administration of stimuli,
the cross-trial distributions of the oscillators’ phases
P 5(t, ¢, ) are uniform [Fig. 1(b)], and the phases of indi-
vidual trials are uniformly distributed on the reference circle
[Fig. 1(al)]. Correspondingly, the resetting and clustering in-
dex vanish in the prestimulus region [Figs. 1(c) and 1(d)].
The cross-trial distribution of the phase difference [Fig. 1(e)]
is sharply peaked at ig= 1, giving a synchronization index o
close to 1 [Fig. 1(f)].

Strong identical pulses simultaneously administered to
both oscillators quickly reset their phases, such that the
phases of all trials are clustered at a particular angle on the
reference circle [Fig. 1(a2)]. Correspondingly, the cross-trial
distributions of phases are sharply peaked [Fig. 1(b)], giving
the resetting indices p close to 1 [Fig. 1(c)]. Due to this reset,
the oscillators undergo a quick transition from antiphase syn-
chronization to strong in-phase synchrony via a short desyn-
chronization segment, indicated by a trough of the synchro-
nization index in Fig. 1(f). For a short period of time, which
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FIG. 1. (Color) Transient dynamics of two coupled phase oscil-
lators Eq. (1) stimulated by 200 rectangular pulses for the case of
antiphase synchronization. Stimuli to the two oscillators are shown
as a gray vertical bar. Time axis is in units of oscillator periods. The
system was simulated for the following parameter values: w=6r,
A=0.2, K=-6, D=0.1, I;=1,=30. The stimulus width is one pe-
riod. The width of the trial window is w=60 periods. [(a)-(d)] Data
for oscillator 1 only. (a) Responses of first oscillator displayed on
the reference circle for three moments of time: (al) prestimulus
segment, r=-2; (a2) at stimulus offset, =1; (a3) poststimulus seg-
ment t=4.31, corresponding to the maximal value of the clustering
index. (b) Cross-trial distribution of the phase of oscillator 1. Low
values are indicated by blue, high values by red, and zero by black.
(c) Resetting index for oscillator 1. (d) Clustering index for oscil-
lator 1. (e) Cross-trial distribution of the phase difference. (f) Syn-
chronization index.

is determined by the duration of the stimulus, the phase dif-
ference is maintained at its unstable equilibrium ¢=0,2,
e.g., at the top of the potential U(t).

In the poststimulus segment, the oscillators relax back to
the stable state of antiphase synchrony. However, since the
system was placed near the unstable equilibrium, there is an
uncertainty: relaxation can occur either to the left or to the
right wells of the potential U(t). Thus, each oscillator begins
to form clusters of two alternate paths they can follow while
reinstating the stable state of antiphase synchronization. In
the particular situation shown in Fig. 1 the selection of the
two pathways corresponds to ¢;—¢,>0 and ¢,—¢p; >0,
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where /=0 represents a saddle point of in-phase synchrony.
This effect is clearly seen in the reference circle [Fig. 1(a)] as
a formation of two separate clusters of responses. The cross-
trial probability distributions of the phases are double
peaked, indicated by the double stripes in Fig. 1(b). These
transient dynamics are well captured by the clustering index
[Fig. 1(d)], which becomes positive. While the first brief
desynchronization epoch is dictated mainly by the external
stimuli, the clustering of oscillator responses is due solely to
their interaction, i.e., coupling. This results in an extended
desynchronization transient which can last for many periods
of oscillations. The clusters of responses persist even after
antiphase synchronization is reestablished, and their decay is
determined by the noise in the system [20]. In order to obtain
an antiphase reset for in-phase synchronized oscillators, the
stimuli applied to the oscillators have to be 180° phase
shifted [19,21].

Inhomogeneities in the oscillators’ parameters, such as de-
tuning of the oscillators’ natural frequencies or differences in
magnitudes of applied stimuli, result in a degradation of the
response clustering effect [20]. For example, frequency de-
tuning results in a tilt of the potential U(¢), and thus in a
preferred direction of poststimulus relaxation to one of the
potential wells. On the other hand, asymmetry in stimulus
intensities may result in placing the phase difference away
from the unstable point, which again leads to a directed flow
of poststimulus phase trajectories. A similar effect occurs
when the stimuli are delivered with a delay, resulting in a
nonantiphase reset [21]. An analytical treatment of inhomo-
geneity effects is given in the Appendix.

The effect of the relative size of coupling, stimulus
strength, and noise on the response clustering was studied in
detail in [20,21]. The height of the barrier of the potential
U(4) is proportional to the coupling strength. Thus, for weak
coupling the potential profile becomes shallow and no
branching of the phase difference trajectories occurs. As
shown in the Appendix, the relaxation time of the resynchro-
nization decreases with the increase of the coupling strength.
In the case of detuned oscillators a large coupling results in a
fast accumulation of the phase difference responses in a
deeper potential well and, thus, no clustering of the absolute
phases occurs [21].

Noise has a crucial effect on the transient resynchroniza-
tion and clustering as studied in [20,21]. In particular, for
homogeneous oscillators in the absence of noise, D=0, the
clusters of absolute phase responses do not decay, while the
phase difference relaxes back to the original synchronous
state dictated by the coupling. On the other hand, for large
noise, the branching of the phase difference trajectories is
still observed resulting in the second desynchronization re-
gion for the synchronization index. However, coherence of
the absolute phase responses, measured by the clustering in-
dex, is destroyed by large noise, such that no clustering of
absolute phases occurs. Effects of detuning, however, can be
compensated by a moderate noise, which causes a symmetric
response clustering also in detuned oscillators, as demon-
strated in Fig. 1.

It is important to stress that traditional measures for cross-
trial analysis, which merely use cross-trial averages of oscil-
lator wave forms, do not capture the clustering dynamics and
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may even lead to erroneous interpretation of experimental
results, as discussed in [19]. In the next section, we analyze
the transient dynamics of coupled neuronal bursters using
standard peristimulus-type analysis, and compare it to an
analysis based on stochastic phase resetting, described
above.

II1. PADDLEFISH ELECTRORECEPTORS AND
EXPERIMENTAL METHODS

We carried out neurophysiological experiments on in vivo
preparations of paddlefish electroreceptors (ERs) [33]. Elec-
trosense is used for prey capture in this fish, which has an
elongated, flattened antennal appendage, the “rostrum,” cov-
ered with thousands of ERs, extending forward of the head.
A single electroreceptor “system” is composed of a cluster of
3-35 skin pores, each leading into a short canal, which ter-
minates in a sensory epithelium containing approximately
400 sensory hair cells [34]. The electrosensitive hair cells of
the cluster make excitatory chemical synapses onto the ter-
minals of a few (2-5) primary afferent sensory neurons
whose axons project to the brain. ERs are characterized by
quasiperiodic spontaneous afferent firing with average fre-
quencies in the range 30-70 Hz, and possess different sensi-
tivity and variability [33]. Individual ERs are not coupled
[33,35], forming a parallel sensory array.

ERs have well-defined receptive fields (RFs) on the ros-
trum, which may be up to 15 cm apart. This allows for non-
overlapping, natural, and noninvasive stimulation of different
ERs by presenting weak external time-varying voltage gra-
dients from local dipole electrodes placed near the RFs, con-
trolled by a computer interface. Electric-field stimuli applied
to the RF of an electroreceptor may significantly alter its
quasiperiodic tonic patterns of afferent firing [33]. For ex-
ample, inhibitory stimuli of large enough magnitude may
drive afferent neurons to a quiescence regime in which they
stop firing.

Although the afferents of different ERs fire continuously
at different rates and typically differ in sensitivity and vari-
ability, they share a common slow time scale of stimulus-
evoked bursting [35]. A time-dependent stimulus may result
in a bursting mode, where spikes are grouped in clusters or
bursts, which are separated by prolonged quiescence epochs
of no firing. Bursting dynamics were also observed when
ERs were chilled to 4-7 °C [33].

A. Experimental methods

Figure 2 shows the experimental setup for creating a hy-
brid neuroelectronic system. Simultaneous recordings of af-
ferent firing were obtained from two ERs having distant RFs
(see [33] for details on electrophysiology). Local stimulation
of their RFs was controlled by a programmable interface,
model P1401, Cambridge Electronic Devices, and model
DS1104, dSpace Inc., operated by a PC.

To obtain slow oscillations in the form of afferent bursts,
having similar frequencies, we instituted artificial feedback
loops by recording the spike train from an ER afferent, and
delivering back to its RF a feedback signal y(r) derived by
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FIG. 2. Experimental setup. (a) Dorsal view of a paddlefish,
showing the widely separated receptive fields of two electrorecep-
tors (RF1 and RF2) on the rostrum, used in these experiments. (b)
Feedback to a given receptor came from real-time computation (see
text). (c) Systems of two coupled bursters, each with a feedback [as

in (b)].

converting (in software) its afferent spike train to a continu-
ous wave form, obtained by calculating the instantaneous
afferent firing rate, then smoothing it in software using a 40
ms low-pass filter. This convolved signal commanded a lin-
ear stimulus isolation unit (SIU) connected to a small dipole
stimulating electrode (EL) over the RF.

Positive (excitatory) or negative (inhibitory) feedback
could be obtained by inverting the y(¢) signal; the strength of
feedback was set in software. Feedback resulted in periodic
bursting firing of the afferent (Fig. 3). Excitatory feedback
gave interburst intervals of =1 s, while inhibitory feedback,
used in the data shown below, resulted in shorter bursts at

£0.084 a
et

05s

) b
>

o

£-0.06

FIG. 3. Afferent bursting due to feedback. The normal tonic
afferent firing at =50 Hz changed promptly to bursting when a
feedback loop was closed (indicated by arrows). Panels (a) and (b)
correspond to excitatory and inhibitory feedback, respectively. In
each panel the lower trace is afferent spikes and the upper trace is
the feedback signal y(7), a.u.: arbitrary units.
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intervals of =0.1 s. The delay of the feedback was 10-30
ms and, hence, smaller than the period of bursting.

We also instituted computer-imposed mutual diffusive
coupling between the ERs [Fig. 2(c)]. Coupling from ER #2
to ER #1 was computed as the difference y,(z)—y,(z), and as
y1(1)=y,(r) from ER #1 to ER #2, where y, ,(7) are the ERs’
smoothed firing rates. These coupling signals were fed to the
other receptor with a strength giving robust synchronization
of bursts [25,28,36]. Depending on the sign of the coupling
strength, we obtained either in-phase or antiphase synchroni-
zation of bursts.

Rectangular 75 ms phase-resetting stimulus pulses were
delivered repeatedly at random times #; to the RFs receptive
fields of both electroreceptors. The stimulus magnitude was
20 times larger than the coupling strength.

B. Data analysis

An ensemble of ER responses to repeated stimuli was
created by imposing nonoverlapping “trial” time windows of
width w=2 s centered at stimulus times f;, tE[t,—w/2, 1,
+w/2]. In each trial window, the stimulus onset is at r=0. An
ER’s spike train within a trial window is defined as x;(z)
=224=16(t— 7,), where 7,, n=1,...,M are spike times of the
jth ER. An analysis approach commonly used in neuro-
science to characterize a neuron’s responses [37] is the time-
dependent spike rate r;(r) at time ¢ relative to stimulus onset,
also known as the peristimulus time histogram (PSTH), de-
fined as r;(r) =(x;(1)).

To calculate instantaneous phases q’)j(t) of bursts, the
spike trains xj(t) were first convolved with s=50 ms cosine
windows,

M

(=~ {1 +COSM]9(,_ f-s). ()
2s )

n=1

where 6(r) is the Heaviside step function. Then the Hilbert
transform [38] was applied to the smoothed signals y(t) to
estimate ¢;(¢) and the phase difference y(7)=d¢,(1)—s(1).
An alternate approach was to first identify bursts’ onsets, and
then calculate phases of burst trains using a linear interpola-
tion: the phase of an ER increases by 2 every time a burst
occurs and interpolates linearly between two subsequent
bursts. Both approaches gave identical results. Cross-trial
phase distributions and corresponding indices were calcu-
lated as described in Sec. II above.

IV. EXPERIMENTAL RESULTS

Data were from 12 pairs of electroreceptors from six
paddlefish. Clear response clustering was observed in three
pairs of electroreceptors. Figure 4 shows an example of an-
tiphase synchronized ERs perturbed by identical inhibitory
stimuli administered simultaneously to both ERs. ERs were
brought to bursting regimes by inhibitory feedback and syn-
chronized in antiphase using diffusive excitatory coupling
[39]. Inhibitory stimuli acted to delayed bursts in both ERs,
bringing them briefly to in-phase synchrony. After stimula-
tion, the stable antiphase synchrony recovered.
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b= Stirr;. onset

0.2s Measurement window

FIG. 4. (Color) Antiphasic synchronized bursts from a mutually
coupled two-neuron hybrid model. Lower traces: raw spike trains.
Upper traces: feedback signals y,(z) and y,(z). Vertical green bar: 75
ms square-wave inhibitory stimulus to both electroreceptors. Yellow
background: one measurement window, w=2 s.

In the majority of experiments, we used coupling result-
ing in antiphase synchronization of bursts, for the following
reason. ERs can differ in sensitivity and adaptation proper-
ties to excitatory and inhibitory stimuli. Thus, to minimize
heterogeneity of neuronal responses, it was advantageous to
stimulate ERs with simultaneous stimuli of the same polarity,
which tended to synchronize them in phase. Thus, in order to
achieve an antiphase reset, the original state of synchroniza-
tion had to be antiphase. Desynchronization of in-phase syn-
chronized ERs was possible too, but required stimuli of op-
posite polarity and thus adjustment of stimuli amplitude in
order to compensate for differences in gain and adaptation.
Alternatively, an antiphase reset was possible with stimuli of
the same polarity, administered with a time delay equal to
exactly half a period of bursting [21].

A. Comparison of simultaneous vs delayed stimulation

We start with two ERs brought to bursting regimes by
inhibitory feedback, and synchronized in antiphase using dif-
fusive excitatory coupling, as described above. First, we per-
turbed the ERs with a sequence of 88 inhibitory pulses de-
livered simultaneously to the RFs receptive fields of both
ERs [Fig. 5(a)], and applied conventional analysis in terms
of raster plots and PSTHs. In the prestimulus region, the
spikes in both ERs occurred randomly with respect to stimuli
onsets, and thus the PSTHs were uniform. Immediately after
stimulation, both ERs fired in concert relative to the stimuli,
giving rise to a large-amplitude deviation of PSTHs, which
then faded away, reflected by a rapid decay of the oscilla-
tions in the PSTHs.

Next, the same coupled ERs were perturbed with pulses
delivered with a delay, such that ER #2 was stimulated 50 ms
after the onset of a stimulus to ER #1 [Fig. 5(b)]. The post-
stimulus segment differs drastically from the previous case
of simultaneous stimulation: the raster plot shows structured
alternations of neuronal firing, and PSTHs show large-
amplitude slowly-decaying oscillations in the poststimulus
segment, clearly indicating that the oscillators’ responses

PHYSICAL REVIEW E 76, 021908 (2007)

FIG. 5. (Color) Two coupled bursting electroreceptors (ERs)
were stimulated with inhibitory pulses in 88 randomly spaced trials.
(a) Stimuli were administered simultaneously to both ERs. (b) ER
#2 was stimulated 50 ms after ER #1. In both panels, the upper
rows show inhibitory stimuli. The middle rows show a raster plot
when spikes of ER #1 are indicated by blue dots and spikes in ER
#2 by red dots. The lower rows show PSTHs for the two bursting
ERs, with corresponding colors: blue dashed line is for ER #1; red
solid line is for ER #2.

were almost perfectly locked to the stimuli, even after 10
periods of poststimulus oscillations, with little decay.

Erroneous interpretations of the transient dynamics shown
in Fig. 5 could occur if based solely on the PSTHs, or more
generally, on simple cross-trial averaging (see also [19]). For
example, a possible interpretation of Fig. 5 could be that the
two different types of brief stimuli acted to induce oscillatory
responses with small [Fig. 5(a)] or large [Fig. 5(b)] ampli-
tudes, despite similar prestimulus firing rates. This interpre-
tation is shown below to be incorrect, because it fails to
consider phase information.

To take into account the phase information, we employed
the cross-trial phase resetting analysis, shown in Fig. 6 for
the case of simultaneous stimulation. In the prestimulus
range, the ERs were synchronized in antiphase, that is, near a
phase difference of 7. Stimuli (vertical bar) reset the phases
of both oscillators, bringing them to in-phase synchrony,
which persisted briefly after stimulation [asterisk, Fig. 6(a)].
The resetting index p;(r) [Fig. 6(c)] was close to 0 in the
prestimulus domain, due to the randomized times of stimulus
administration. p;(t) increased rapidly during stimulation to
its maximum possible value of 1, indicating a strong reset.
Resetting indices then relaxed back to O quickly, indicating
that the oscillators promptly “forgot” their new reset phases.
In the course of the reset, the synchronization index o(z)
[Fig. 6(d)] showed mwo desynchronization segments: the
value of o(¢) temporarily fell (detecting a transient desyn-
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FIG. 6. (Color) Transient phase dynamics after simultaneous 75
ms inhibitory stimulation of a network of two electroreceptor burst-
ers, each with inhibitory feedback and excitatory mutual coupling,
as in Fig. 4. The stimuli, at random times, are indicated by a vertical
bar at r=0 across panels (a)—(e). (a) Time-dependent probability
density of the phase difference of the two bursters. Low values are
indicated by blue, high values by red, and zero by black. Arrows
show upper (U) and lower (L) branches of trial trajectories (see
text). (b) Time-dependent probability density of the phase of burster
#1, relative to the onsets of stimuli. Note double-peaked structures
in the poststimulus domain, denoted as blue bands separated by
narrow black stripes. (¢) Time course of resetting index for burster
#1. The dashed line indicates the significance level at the 99th per-
centile of the prestimulus (#<0) distribution. (d) Time course of
synchronization index. (e) Time course of clustering index for
burster #1. The shaded area indicates a statistically significant ep-
och of clustering.

chronization) during the stimulus at the transition from an-
tiphase to in-phase synchronization, and again later when the
temporary poststimulus state of in-phase synchronization de-
cayed [asterisk, Fig. 6(d)]. These results illustrate the useful-
ness and effectiveness of the resetting and synchronization
indexes for characterizing transient phase dynamics in ex-
perimental data.

B. Response clustering

During the second, poststimulus, more extended epoch of
oscillator desynchronization [asterisk, in Fig. 6(d) (asterisk)],
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FIG. 7. (Color) Response clustering. (a) Responses of burster #1
displayed on the reference circle for three moments of time relative
to the stimulus onset. (al) In the prestimulus segment (r=—1 s),
points were distributed uniformly on the reference circle. (a2)
Shortly after the offset of the stimulus when the resetting index
reached its maximal value (¢=0.137 s), the phase of burster #1 was
reset across trials, and thus points on the reference circle were con-
centrated within a single cluster. (a3) In the poststimulus segment,
the trail responses formed two clusters while the clustering index
reached its maximal value at 7=0.505 s. The red asterisks indicate
the phase of burst onsets. (b) Selective PSTHs of the two branched
responses of burster #1. The red and blue lines show PSTHs for
upper (U) and lower (L) branches of Fig. 6(b). The black line shows
PSTH for the whole ensemble of burster #1 trials [same as the blue
dashed line in Fig. 5(a)].

1-
S b
o
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057 ¢

FIG. 8. (Color) Transient dynamics of coupled electroreceptors
in the case when ER #2 was stimulated 50 ms after ER #1. The
stimuli to ER #1 and ER #2 are indicated by blue and pink vertical
bars, respectively. In (a)—(c), solid black lines refer to ER #1 and
dotted red lines refer to ER #2. (a) Time course of resetting index.
(b) Time course of clustering index. (c) Time course of synchroni-
zation index. The dashed line indicates a significance level at the
99th percentile of the prestimulus (#<<0) distribution.
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the trial responses of each oscillator began to form clusters of
two alternate phase trajectories, which they could follow
while relaxing back to the usual antiphase synchronization,
from the transient poststimulus epoch of in-phase synchroni-
zation. The alternate paths are seen as a lower (L) or upper
(U) branch of the oscillators’ phase difference [Fig. 6(a)].
Formation of the response clusters is also seen as double
peaks in the distributions of each oscillator’s phase relative
to stimuli Pj(z,¢;), shown in Fig. 6(b) for ER #1, and is
clearly displayed on the reference circle [Fig. 7(a3)]. To re-
synchronize in antiphase, either ER #1 had to fall behind ER
#2, or vice versa; these alternatives correspond to the two
branches of the poststimulus desynchronization segment,
seen as two clusters on the reference circle. Such clusters
persisted >10 cycles after reinstatement of antiphase syn-
chronization.

Clustering was quantified as significantly positive values
of the clustering index a;(¢). In Fig. 6(e), the maximum of
(1) (gray shading), when it was significantly above the pre-
stimulus baseline range, indicates when the most pronounced
double-peaked structure of Pj(t,d)j) occurred. The subse-
quent decline of a;(t) was due to noise in the system [20].

Clustering could also be revealed in PSTHs for a given
oscillator, by separately grouping the trials leading to the
upper (U) or lower (L) branch of the poststimulus desyn-
chronization segment [arrows, Fig. 6(a)]. The selective
PSTHSs calculated for each branch [solid red, dashed blue
lines, Fig. 7(b)], showed large-amplitude antiphasic oscilla-
tions. They were antiphasic because of the two different
ways to reestablish antiphase synchronization after stimula-
tion (that is, ER #1 falls behind ER #2, or vice versa). In
contrast, the PSTH of the whole ensemble of trials [black
dotted line, Fig. 7(b)] showed smaller-amplitude oscillations,
because it was the mean of the antiphasic selective PSTHs,
which canceled. Thus, a relatively uniform ensemble PSTH
may not signify that the average response of an oscillator is
small, but instead may result from cancellation of responses,
which are phase shifted in different trials, e.g., due to re-
sponse clustering.

If stimuli were administered not simultaneously to both
receptors, but instead with a significant delay [as in Fig.
5(b)], the response clustering did not occur. Delayed stimuli
induced long-lived (>10 cycles) elevation of the resetting
index, shown in Fig. 8(a). However, the two oscillators be-
came desynchronized only briefly, during stimulation [Fig.
8(b)]. The clustering index never reached a significantly
positive level [Fig. 8(c)], consistent with there not being any
poststimulus epoch of unstable in-phase synchrony. In gen-
eral, unstable synchronization is required to observe alternate
phase trajectories (that is, response clustering) during relax-
ation to a stable phase relation of the oscillators.

V. CONCLUSION

We revealed response clustering in a hybrid neuroelec-
tronic system of two coupled paddlefish electroreceptors.
These experimental results are in agreement with the tran-
sient dynamics predicted using numerical simulations of a
generic phase model for two coupled oscillators. In an ideal
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symmetric situation of two identical oscillators, synchro-
nized in antiphase, a stimulus-induced reset to in-phase syn-
chronization corresponds to placing the phase difference at
the unstable equilibrium state ¢,=0,2. Due to noise, there
is uncertainty as to whether an oscillator will relax after a
stimulus to one stable state or the other, ¢,= + 7. This uncer-
tainty is the source of the decorrelation of responses. Thus,
the unstable state separates the ensemble of responses into
two groups, leading to the formation of two clusters, such
that the phase distributions of both oscillators P, ,(t, ¢) pos-
sess two peaks. The decorrelation of responses resulting
from clustering tends to cause cross-trial averaged signals to
vanish. Our results emphasize that information about the
phases of neuronal oscillators must be retained and utilized
in order to correctly interpret and quantify transient stimulus-
evoked dynamics, whereas traditional neuroscience metrics
based on simple cross-trial averaging, which lose and ignore
phase information, may be misleading.

The decorrelation of responses was incomplete in our ex-
perimental data, as indicated by small-amplitude poststimu-
lus oscillations of PSTHS in the lower row of Fig. 5(a). Sev-
eral causes can lead to such an effect [20], including
nonidentity of the coupled ER bursters, nonidentity of stimu-
lus intensities, or time-delay effects in propagation of
stimulus-induced changes (for example, spike propagation
delays from receptive fields to recording sites). The coupling
strength also plays a significant role in clustering of oscilla-
tors responses. When the coupling strength between the elec-
troreceptors was too strong, the clustering effect disappeared
(not shown), as the stimulus was not strong enough to place
the bursters at the unstable state. On the other hand, indeed,
no clustering occurred in the system of uncoupled electrore-
ceptors, as a control. Some units demonstrated a high degree
of variability of the bursting. In terms of the model (1) this
corresponded to a large noise intensity D. Although a
branching of the phase differences trials was observed, a
clustering of the absolute phases was insignificant (not
shown), since the large noise rapidly smeared out the re-
sponse clusters.

Recently, the impact of resetting stimuli on two phase
oscillators coupled with delayed self-feedback was investi-
gated [22], which showed that maximal response clustering
as well as maximal resynchronization time occur if a system
gets trapped at a stable manifold of an unstable saddle fixed
point, due to appropriately calibrated stimuli. For this, the
two oscillators have to be reset in such a manner that their
phase difference attains a value which—for nonvanishing
delay—differs from that of the unstable fixed point. The
emergence of long resynchronization transients is a conse-
quence of the delayed component in the coupling term [22].
Since coupling delays are inevitable in biological systems, it
might be interesting to study whether it is possible to exploit
the impact of coupling delays for control purposes, e.g., by
causing long resynchronization transients by appropriately
timed resetting stimuli.

The experimental system that we used, consisting of two
electroreceptors of paddlefish, coupled externally and stimu-
lated naturally and noninvasively, makes use of real neurons
yet is relatively well defined. ERs offer a natural interface
with electronics, since their sensory modality is the detection
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of weak voltage gradients, and their responses are propor-
tional to stimulus strength (graded) and are dual polarity (in-
hibited or excited per stimulus electrical polarity). This ex-
perimental model’s neurons includes complex processes such
as excitatory synaptic transmission from receptor cells to af-
ferents, and adaptation, and internal higher-frequency oscil-
lations [33]. Thus, our experimental results and analytical
studies are of interest for characterizing the transient dynam-
ics of other complex systems, including other neural sys-
tems.
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APPENDIX: ANALYTICAL TREATMENT OF RESPONSE
CLUSTERING

The analytical treatment of Eq. (1) is hampered by a re-
quirement for a time-dependent solution of the correspond-
ing two-dimensional Fokker-Planck equation. However, the
effects of asymmetries can be studied analytically by sepa-
rately considering the prestimulus, during stimulus, and post-
stimulus segments, in the limit of large coupling and strong
stimulus, when noise can be neglected.

In the prestimulus region t <0 the dynamics of the system
are governed by Adler’s Eq. (2). We consider the case of
strong synchronization, |K|>A and |K|>>D, so that no
phase slippage occurs and noise can be neglected. The phase
difference is constant, (z<<0)=g=arcsin(A/K). The oscil-
lators’ phases ¢, , are uniformly distributed across trials due
to the random administration of the stimuli.

At stimulus onset (t=0), the phases of both oscillators are
uniformly distributed across trials. Since both oscillators are
synchronized, the phase difference at =0 is fixed at ¢4(0)
=5 and thus, the random phases ¢; ,(0) are coupled accord-
ing to ¢;(0)—¢h(0)=s.

During stimulation, 0<t=17, (7, is the duration of the
stimulus), we assume I, >>|K| and neglect both coupling and
noise in Eq. (1), since I,>>|K]| and I,>>D. This provides us
with a simplified equation for the phases of the oscillators,
dp=w+1, cos ¢y, which can be easily solved with the initial
conditions ¢;(0)=d¢, and ¢,(0)= dy— i,

P(t, ¢ (0)) =2 arcta“{ ay P+ B (¢ (0)) |

Ik—“’k>l/2 N V)
a=\—| , =(l[-w s
k (,M Bi= (1} - )
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FIG. 9. Poststimulus segment of the transient dynamics of two
coupled phase oscillators calculated analytically according to Eqgs.
(10) and (11). The parameters are w;=w,=61, K=-3, I;=30. (a)
Ten trajectories of the phase difference were calculated according to
Eq. (10). Initial phase differences ¢, were uniformly distributed in
[r—d/2yp+d/2], d=0.1. Three panels [(al)—(a3)] correspond to
different values of the stimulus magnitude of the second oscillator,
1,=30 (al); I,=31 (a2); 1,=33 (a3). (b) Poststimulus time course of
the synchronization index Eq. (11). Three curves correspond to the
values of I, in the panel (a): 1,=30 (solid line 1); ;=31 (dashed
line 2); I,=33 (dotted line 3).

X
1 - tan—

By = ——.
1+ oy tan—
2

Ik>wk, OSISTS.

(AD)

Equation (A1) gives the phase trajectories of the trial re-
sponses with the random initial condition ¢, drawn from a
uniform distribution, P(¢y)=1/2m, ¢yE[0 27). The trial
responses relax to the equilibrium reset values
—arccos(w /1), with the characteristic time determined by
the constants 3. In the case of identical oscillators synchro-
nized in antiphase and identical stimuli, the phase difference
is reset to =0, that is, to the unstable equilibrium of
Adler’s equation. However, detuning of the oscillators and/or
a difference in stimulus magnitudes shift the reset value of
the phase difference away from the unstable point,

g = arccos(w,/I,) — arccos(w,/1,). (A2)

The Fourier coefficients (3) can be calculated by averag-
ing across the ensemble of initial phases ¢;. In the thermo-
dynamic limit of infinitely many trials, we have )\,(CV)
=1/Qm)| 3™ explivey(t, do)ldy|. In the limit [,> wy, we
obtain simple expressions for the resetting and synchroniza-
tion indices,

p(t) = tanh(%), o(t) = |1 -2 sech(Ir)

, 0=r=r,.

(A3)
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The poststimulus segment t> 7, can be analyzed using
Adler’s Eq. (2). In the limit |K|>> D, we again neglect noise,
but assume that at stimulus offset the phase difference
#(7)=1), is a random variable distributed around . For
simplicity, we consider a narrow uniform distribution with
the width d centered at ¢, and identical oscillators A=0.
The solution of Adler’s equation with the initial condition
¥(7,) =1, takes a simple form,

_K(- ¥,
Wt i) =2 arctan[e K= tan—zg , =1, (A4)

For a given initial phase difference ¢, the characteristic
relaxation time is determined by the coupling strength K.
The synchronization index (3) can be calculated in the ther-
modynamic limit as
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o(t)=—

P (A5)

Yrdl2
f exp(idh(t. )i |

Yp—di2

and is shown in Fig. 9. In the case of identical stimuli /;
=1, the distribution of the initial phase differences is cen-
tered at x=0. This unstable point separates transients into
two symmetric paths [Fig. 9(al)]. At 1= 1.5, the synchroni-
zation index drops to zero due to the symmetric splitting of
the trial responses into two antiphase clusters [curve 1 in Fig.
9(b)]. In the case of nonidentical stimuli, the splitting of the
trial responses becomes asymmetric [Fig. 9(a2)], indicated
by a nonvanishing minimum of the synchronization index
[curve 2 in Fig. 9(b)]. For a larger mismatch of the stimuli,
the splitting of the trial responses no longer occurs [Fig.
9(a3)], and the effects of clustering and poststimulus desyn-
chronization disappear [curve 3 in Fig. 9(b)].
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